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Uncoupled problems of thermoelasticity for a finite hollow circular cylinder with a groove along the generatrix for different types 

of boundary conditions on all the surfaces are considered. These are the conditions for specifying displacements equal to zero 

or sliding clamping on the cylindrical surfaces and on the edges of the groove and the conditions for specifying stresses on the 

ends of the cylinder (shear stresses are assumed to be zero). It is assumed that the problem of thermoelasticity has been solved 

and the temperature is known. Certain auxiliary functions, related to the displacements, are initially introduced, and equations 

for these functions are derived using Lame’s equations. A finite integral Fourier transformation with respect to the polar angle 

and a finite Hankel transformation with respect to the radius are then used. As a result a one-dimensional boundary-value vector 

problem is obtained for a first-order differential equation, which is solved using Green’s matrix constructed. Finally, exact solutions 

of the problems are constructed in series. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEMS 

We will consider steady problems of thermoelasticity [l, 21 for part of a finite hollow circular cylinder, 
which, in a cylindrical system of coordinates (r, cp, z), occupies the region 

CQC’GU,, (p()~‘pC’p,, h,czctl, (1.1) 

On the cylindrical surfaces r = Ui (i = 0, 1) and on the faces cp = ‘pi (i = 0, 1) the displacements ur, up 
and U, or the conditions for sliding closure are specified, i.e. 

On the end faces z = hi (i = 0,l) the boundary conditions may be arbitrary, but to fix our ideas we will 
take them to be as follows: 

~,(r,cp,h,)=-p”‘(r,cp), ~rz(‘;,‘P.h;)=~,,(l;,cp,hi)=O; i=O,l (1.3) 

In the case of steady uncoupled thermoelasticity, the temperature field can be found in advance by 
solving one or other boundary-value problem for Laplace’s equation. Since similar problems have been 
fairly well investigated for cylindrical bodies [3], we will assume that the temperature field is already 
known. Another approach to solving boundary-value problems of thermoelasticity for hollow circular 
cylinders was proposed in [4] for the case when there are no faces cp = cpi (i = 0, 1). 

Note that the problem formulated in this way is equivalent to the problem of solving the similar 
boundary-value problem for inhomogeneous Lame equations with volume forces of a special form. 

2. CONVERSION OF THE THERMOELASTICITY EQUATIONS TO 

A NEW FORM 

We will introduce the following notation for the displacements in a cylindrical system of coordinates 

2Glln,, uv. u, II= I/U VT WI1 (2.1) 
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where G is the shear modulus, and also the functions Z(r, cp, z) and Z*(r, cp, z), defined by the formulae 

, (2.2) 

Then the thermoelasticity equations can be written in the form [l, 21 

AU-r-2(CJ+ 2V')+&'=a,T 

AV-Y2(V -2U')+r-'&i' =af'T 

p'o = (l--2&, ap = 4a,G(1+ p)p,,, if = Z+ W’ (2.3) 

Here p is Poisson’s ratio, ar is the coefficient of linear expansion, T = T(r, cp, z) is the temperature and 
A is the Laplace operator in a cylindrical system of coordinates; the partial derivatives with respect to 
r are denoted by a prime, partial derivatives with respect to the variable cp are denoted by a point and 
partial derivatives with respect to the variable z are denoted by a subscript comma. 

We will convert Eqs (2.3) for which we multiply the first equation by r, we differentiate with respect 
to r and divide by r, and we differentiate the second equations with respect to cp and divide by r. We 
add the equations obtained and then carry out the same operation with the second equation of (2.3) 
as on the first equation of (2.3) in the previous case, while on the first equation of (2.3) we carry out 
the same operation as on the second equation in the previous case, and subtract the results. We finally 
reduce Eqs (2.3) to the form 

AW+po~*=a,T., AZ+poZ=a,,VT, AZ* =0 

Vf(r, cp, 2) = r-‘[fir, (9, z)l’+ r-‘_f Cr. cp, z) 

(2.4) 

If we solve Eqs (2.4) i.e. obtain the functions 2 and Z*, defined by formulae (2.2), then to find the 
functions U and V, defining the displacements, we must solve the equations 

(2.5) 

They are obtained from (2.2) using operations similar to those carried out on Eqs (2.3) when obtaining 
Eqs (2.4). 

3. INTEGRAL TRANSFORMATION OF THE EQUATIONS OBTAINED 
WITH RESPECT TO THE VARIABLE cp 

The integral transformation of the equations obtained depends very much on what conditions are 
imposed on the faces cp = cpi (i = 0, 1). If the displacements are specified on them, we use a Fourier 
sine transformation in a finite interval, assuming in this case that cpo = 0, i.e. we change in Eqs (2.4) to 
the transforms 

X,(r. 2) = 7 X(r, q, idsinj.qp44 cI, =c. n=l,2,... 
0 

(3.1) 

(the transforms Z,* and T,, are defined similarly). Here we have introduced the following notation 

The inversion formulae for the transforms have the form [5] 

X(r, cp. z) =ti, X,(r,z)sinp,(P, jr”=:, n=l,2,... (3.2) 
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If the conditions of sliding clamping are specified on the faces cp = Cpi (i = 0, l), i.e. conditions (1.2) 
then instead of integral transformation (3.1) we must take the following 

X,(r, z) = “,lxcr, cp, z)cosu,cp&, CLn = 
(n - 1)7t 
-, n=l,2,... (3.3) 

0 cpl 

with the inversion formulae [5] 

X(r, cp> z) = ; p,cr. z)cosp,‘p, b, = 
(n - 1)X 
-, n=l,2,... 

n CPI 
(3.4) 

(the prime on the summation sign denotes that the first term must be multiplied by l/z). 
The use of integral transformation (3.1) denotes that the following boundary conditions are satisfied 

W(r,cp;,Z)=Z(r,cpi,Z)=Z*(r,cPi,Z)=O, i=O,l (3.5) 

and the use of second integral transformation denotes that the following boundary conditions are satisfied 

w’(r,(pi,z)=Z.(r.(pi,z)=Z*‘(r,(pi.z)=O, i=O,l (3.6) 

If cpo = -rt and cpi = rt in conditions (1.1) i.e. there are no faces cp = cpi (i = 0, l), then, instead of 
integral transformations (3.1) and (3.3) we must take the following integral transformation [3] 

X, (r, z) = J-J X(r,cp, z)e-‘“‘dcp, n =O,+l,f2 ,... (3.7) 
ll 

with the inversion formulae [3] 

X(r, cp, z) = 2 X,(r,z)e’“’ (3.8) “==a 

If we apply integral transformations (3.1) (3.3) and (3.7) to Eqs (2.4) they acquire the form 

W; - u;‘V, W, + j.+L;‘Z~ = a&T,‘, Z;I - u*V,Z, + uaV,,w’ = -a,V,T, ; (3.9) 

where 

u* =2(1 -p)uo z,*,, -v,z; =o 

V,f(r, z) = I-lir-*f(r, z) - r-l [ f( r, z)]’ (3.10) 

Here, in the case of integral transformation (3.1) the expression for un is taken from (3.1), in the case 
of integral transformation (3.3) the expression for u,, is taken from (3.3), while in the case of integral 
transformation (3.7) un = n (n’= 0, +i, k2, . ..). 

We make the following replacement in Eqs (3.9) 

X,(r. t) = X,@ p, ai<) = &(p, 0 

Z,*(r, z) = Z,‘(aiP, u,C> = Fl,‘(P, 0, 

As a result we obtain 

(3.11) 

(3.12) 

u=a(Jlu,, h, =u;?zi, i=O,l, i;b <C<h, 

Here and everywhere henceforth a dot denotes a partial derivative with respect to the variable <, 
and a prime denotes a partial derivative with respect to p. 
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4. REDUCTION OF THE EQUATIONS TO 
ONE-DIMENSIONAL EQUATIONS 

To reduce Eqs (3.12) to one-dimensional equations we will use an integral transformation with respect 
to the variable p while satisfying the conditions 

liT,(P,,r)=Z,(P,,r)=z,f’(Pi,r)=O, i=O,l (P()=U, Pr =l) (4.1) 

for the case when the displacements are specified on the faces r = a, and cp = cp, (i = 0, l), while satisfying 
the conditions 

~‘(Pi, <)= ~~(Pi, <) = Znt’(Pi, c)=O, i =O, 1 (PO =(I, PI = 1) (4.2) 

when conditions (1.2) are specified, i.e. in Eqs (3.12) we change to the transforms [3] 

xnk <&) = i Fn (P? <)Cp,,j (Py v)PdP, j = O* l; v = vi I k=O,l,... 
0 

Here 

(4.3) 

cp n,J = N,(av)J,(vp)- ./,(av)N,(vp); p = u, = fnr’p;‘, v = v; 

(4.4) 

cp ,,, = N;(av)J,(vp)-J;(av)N,(vp); p==,, =(n-l)rc(p;‘, v=v:; n, k=l,2,... 

(N,(x) is the Neumann function and J,(x) is the Bessel function). The transforms z$(<) and T,,,(i) are 
defined similarly. 

The eigenvalues VI] and vi are the positive roots of the transcendental equations 

N,(av)J,(v)-J,(av)N,(v)=O; J.l=p, =nltcp;‘, v=v; 

(4.5) 
N;(uv)J;(v)-J;(uv)N;(v)=O; p=p,=(n-1)x&, v=v:; n,k=l,2,... 

The inversion formulae for transforms (4.3) have the form [3] 

JT,(P* 0 = 5 JuJ 
Cpn, j(P* ‘) 

(cp”, j (P? q2 ’ 

j=O,l; v=v{, k=O,l 
k=l 

where 

21)(P,.,(P. v)lJ2 = [cp;.o(v, v)12 -a2b&(w 91, v = vi, p = p, = nq;’ 

(4.6) 

(4.7) 

2v211%, I (P. v)J12 = (v2 - CL2 )cp%., ( v, v) - (v2u2 - f.t2)(Pn,r(VU, v), v = v:, 

p=p,, =(n-l)mpl’; n,k=l,2,... 

The functions (~,,,(p, v) satisfy Bessel’s equation, i.e. 

V,cp,,,(p, v)= v*cp,.,(p, v), j =O, 1; v= vi, k = 1, 2, . . (4.8) 

By applying integral transformation (4.3) to Eqs (3.12) and taking Eq. (4.8) into account we reduce 
them to the form 

(4.9) 
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Here, when applying integral transformation (4.3) to Eqs (3.12) with j = 0 (conditions (4.1) are 

satisfied) v = vi(k = 1, 2, . ..). and when j = 1 in relations (4.3) (conditions (4.2) are satisfied), 

v = v;(k = 1, 2, . ..). If tpo = - n and cpl = rt in conditions (1.1) then the parameter u in formulae 

(4.4)-(4.10) must be fixed by the expression u = u,, = II. 

5. CONSTRUCTION OF THE SOLUTION OF THE ONE-DIMENSIONAL 
DIFFERENTIAL EQUATIONS 

The solution will be constructed so as to satisfy conditions (1.3). In order to write the latter in terms 
of the functions (2.2), we will consider combinations for the shear stresses r,, and r,,, similar to (2.2) 

(5.1) 

Using the relation between the stresses and displacements given by Hooke’s law in a cylindrical system 
of coordinates [2], we obtain 

22=VW+Z’, 2r* =z*‘ 

or, after applying the integral transformations given by formulae (3.1) and (3.7) and the replacement 
of variables given by (3.1 l), 

(5.2) 

The last two conditions of (1.3), in view of relations (5.1) become t(~, cp, 11;) = t*(r, cp, 12;) = 0 
(i = 0, l), which, according to Eqs (5.2), are equivalent to the conditions 

~,Z~(p,h,)-V,~~(p,h,)=O, Zi,“(p,h,)=O; i=O, 1 (5.3) 

As a result, by virtue of relations (3.5), (3.6) (4.1), (4.2) and (5.3) we arrive at a homogeneous 
boundary-value problem for the function z,*(p, c), and therefore 

Z,‘(p, 6, = 0 (5.4) 

Applying integral transformation (4.3) to the second equation of (5.3) we obtain 

~,-‘v’w,(h,)-~,(h,)=O, i=O,l (5.5) 

Since the normal stress oz by virtue of Hooke’s law [2], and taking Eqs (2.2) into account, is expressed 
by the formula 

(I -Zp)o,(r, cp, z) =@+(I -p)W‘-(I -2p)a,T 

the first boundary condition of (1.3), taking (3.11) into account as well as the integral transformations 
indicated above, can be written as 

(5.6) 

g’? = PC: - CXp?;nk(h,); n n 
i = 0, 1 

If we introduce the following functions as the unknowns of system (4.9) 

Yo(O= Wnk(cJ9 y,KJ= q,;(<>? Y2(r)=.%Kh Y3(o=zx) (5.7) 

which are the components of the required vectory(<), this system can be written in the following vector 
form 

y’(i) - P,Y(<) = da,fKh i;, < 6 < 6 (5.8) 
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YOK) 

Y(C) = ;;;, Pk = 

Y3K) 

0 1 0 0 

1;'v2 0 0 0 
0 0 

-p;:a,po ( f(@= 

0 a;1pov2 p,v2 0 

0 

qT& K) 
0 

(5.9) 

-P*V2T,, 03 

In order to relate the boundary conditions to differential equation (5.8) we construct the boundary 
functional 

U[y(fJl= AY&) + BY(&) (5.10) 

are the vector y, defined by the formulae 

(5.11) 

(the matrix B is obtained from the matrix A by interchanging the first two and the last two rows). Then, 
in order to satisfy conditions (5.5) and (5.6), written taking the notation (5.7) into account, we must 
add the following boundary conditions to Eq. (5.8) 

uYK.)l= -(I - W)Y (5.12) 

6. SOLUTION OF THE VECTOR BOUNDARY-VALUE PROBLEM 

Extending the right-hand side of Eq. (5.8) to zero along the whole real axis, we apply a Fourier 
transformation to it 

We obtain the solution in the form 

Y(C) = I f(Wc - SW, 
-m 

@( y) = & 7 [-id - Pk I-’ e-taYdcx 

where <p(y) is the fundamental matrix function [6,7] of inhomogeneous equation (5.8). It can also be 
written in the form 

@(y)=k’r [{I-Pk]-1e5Yd{, y=<-s (6.1) 
--I- 

It follows from the expression for the characteristic polynomial of the matrix Pk [8, 71 

det(cI - Pk) = Q,(c) = 5” - 2c2v2 + v4 = (c2 - v2)2 (6.2) 

that is has two multiple roots: v and -v. Then, the added matrix A*(k) for the matrix Pk can be 
represented in the form [8, 71 

A*(c)= f: I’As-j 
j=O 

A, = I, A, = Pk, A2 = P,’ - 2v2Pk, A3 = P,’ - 2v2Pk = -v4&’ 

and we obtain the equality 

({I-P/ = Qi’ $ {‘As-j 
j=O 

(6.4) 
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Substituting (6.4) into (6.1), we obtain 

m(y)= f: As-j $ ‘W(Y). Y =<-’ 
j=O (1 

lJqy)=l+f 1e b 4 vlyl+l -Vlyl 

2xi -;- (5 - v)2 
-=-e 

(k+v)2 4v3 

(6.5) 

(relation (6.2) has been taken into account). 
Since the boundary conditions of the boundary-value problem are inhomogeneous, to solve it not 

only is Green’s matrix function [6, 71 necessary, but also the basis matrix function q(c), which is the 
solution of the matrix boundary-value problem 

W(C) - P,W(<) = 0, U[yr(<)] = I, Lo < 5 < Ji, (6.7) 

To construct it [6, 71 we must have the solution Y(c) of the matrix differential equation from (6.7). 
It can be shown that its solution will be the following integral [6, 71 

where the contour C envelopes all the zeros of the characteristic polynomial (6.2). Substituting expression 
(6.4) into (6.8) and taking the residues at multiple poles v and -v, we obtain 

W*(C)= 
v(chv<-shv( 

2v3 (6.9) 

It can be shown by direct substitution that the solution of boundary-value problem (6.7) is the matrix 

WJ = wL;wy(L;N)-’ (6.10) 

while Green’s matrix function [6, 71 of boundary-value problem (5.8) (5.12) is the matrix 

G(L s) = W - s> - QWJP(S - s)l (6.11) 

and thus [6, 71 its solution will be the vector 

(6.12) 

7. COMPLETION OF THE CONSTRUCTION OF THE EXACT 
SOLUTIONS OF THE PROBLEMS 

Hence, the transform wnk(<) of the displacement 

u,(r,(p,z) = 2GWa,p,cp,a,,~) = 2G&p,cp,c) 

and the transforms .&,$J_and z,$(<), 0 are completely defined, but for the complete solution we need 
to obtain the transforms U,,(c) and V,,(c) of the displacements 

u,(r,cp,z) = ‘XWa,,p,cp.a,<) = 2G0(p,cpJJ, u,,,(~,cp,z) = 2Gv’(p,cp,C) 

To find them we will use Eqs (2.5). If we take equality (5.4) and the replacement (3.11) into account, 
as well as the notation 

(7.1) 
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we can write the differential equations 

(7.2) 

With these equations we can set up boundary conditions so that the conditions of rigid clamping (the 
displacements are specified) on the faces cp = Cpi (i = 0, 1) are satisfied, i.e. 

F*(p,cp,,<)=O, i=O,I (7.3) 

These conditions will be satisfied if we apply integral transformation (3.1) to Eqs (7.2) i.e. 

cCp,()=y ~(p,q4()sinPL,@qh PL, =z. n=l,2,...,(Cpa =O) (7.4) 
0 

As a result, Eqs (7.2) take the form 

(75) 

where in formula (3.10). which defines the operator V,,, we must take u, from (7.4) and replace r and 
z by p and <. 

We must add to these differential equations the boundary conditions which ensure rigid clamping 
of the faces r = a, (i = 0, l), which, taking notation (7.1) and transformations (7.4) into account, can 
be written in the form 

i7~(pi,<)=~:(pl,<)=0, i=O,l(po=a,pl =l> 

The latter will be satisfied if we use integral transformation (4.3) to solve Eqs (7.5) with j = 0, i.e. 

G (0 = i ncJ%,o(PJ)P~P~ v=v;, k = 1,2,... (7.6) 
a 

As a result we obtain 

v = vi, k = 1,2,, 

(7.7) 

Hence, the transforms of the displacements uEk(<), v;;n*,!J<) and @n,(<) (the latter is defined by (6.12) 
and (5.7)) are obtained, and from them, using the inversion formulae (4.6) and (3.2), and also formulae 
(2.1) (6.12) and (7.1), we obtain the displacements themselves, i.e. the exact solution of the problem 
in the case when the faces r = ai, Cpi (i = 0, 1) are rigidly clamped. 

If, in conditions (1.1) cpo = -rt and cpl = 7t and there are no faces cp = Qi (i = 0, l), then instead of 
transformations (7.4) we must apply to Eqs (7.2) the transformations 

(7.8) 

As a result we arrive at Eqs (7.9, in which we must take zi = z,,, pn = -in, while the quantities 
z,, must be taken in accordance with integral transformation (3.7), taking replacements (3.11) into 
account. Solving these equations using transformations (7.6) we obtain transforms (7.7) in which we 
must introduce these changes. The required displacements are found in the same way as in the preceding 
case, except that we must use formulae (3.8) instead of the inversion formulae (3.2). 
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We will consider the case of sliding clamping, i.e. when conditions (1.2) hold. The stresses there, 
according to notation (2.1), can be written in the form [2] 

2t-$, =U’+r2(r-Iv)‘, 2t$, =rV’+W’, 27, = W’+(/’ 

or, in the notation of (3.11) and (7.1), in the form 

Hence, if we take into account the fact that the conditions w(p, cp;, <) = 0 (i = 0, 1) are already 
satisfied in view of conditions (3.6), the last three conditions of (1.2) will be satisfied as u(p, cp,, <) = 

v(P, Cpi, 5) = 0 (i = 0, I), or, in the notation of (7.1), 

u*‘(p,cp,,c)= v* (p,(pi,<) = 0, i = 0,l (7.10) 

If we take into account the fact that, when finding w condition (4.2) is satisfied, then, to satisfy the 
first three conditions from (1.2) it is sufficient, by relations (7.9), to realise the conditions 

fl(pi,‘p,c) = 0, [pv’- FIFPi = 0, i=O,l. p. =a, p, = 1 

or in notation (7.1) the conditions 

c*(pi,cp,c)=o, [pV*‘-2p-‘v*],,; =O, i=O,l, PO =a, PI =I (7.11) 

In order to satisfy conditions (7.10), we change in Eqs (7.2) to the respective transforms (everywhere 
henceforth n, k = 1, 2, . . .) 

q&r) = ‘i cospL,cp~*@,cp,~)&~ pL, = (n - 1)qJ,‘(cp, = 0) (7.12) 
0 

Then Eqs (7.2) become 

-V&*(p,c) = a,p-‘[p2Z,(p,~)l’. I-& =(n - 1MccPL (7.14) 

-Vv,‘(p.C) = a,j+Q,O(p,[), pn = nxcp;’ (7.15) 

Here z, is taken in accordance with (3.3), while for 271 we take the same formula except that pc, must 
be taken as in (7.13). 

In order to satisfy the first condition of (7.1 l), in Eq. (7.14) we change to transforms given by formula 

(7.6) 

(7.16) 

To satisfy the second condition of (7.11) we must apply to Eq. (7.15) the integral transformations [3] 

E;(<,=j P~(P.bPn*(PJwPl v=v; (7.17) 
n 

in which the kernel is given by the formula 

0% =J,(vp)[vaN~(av)-N,(av)]-N,(vp)[vaJ~(av)-J,,(av)l, p =PL, = fmp;’ 

where we take as v the roots of the transcendental equation 
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[~J;(v)-J,Jv)][~~N;(~~)- N&n’)]-[vN;(v)- N,Jv)][vuJ;(av)-J,(av)]=O, 

v = v; 

As a result we obtain from Eq. (7.15) 

CPI 1 
V,;m=~ 1 j P~(P~(P~r)(Pn*(P,V)COSCl”~~P~ v=v;> I_I, = mcp;’ (7.19) 

0 LI 

(7.18) 

The inversion formula for this transform has the form [3] 

(7.20) 

2v2 II cp,*(p,v) 112= v2[(p~*(v,v)12 + w* -p~)cp~*m+- v2a2bp~*ovN2 +*a2 - P”j2 x 

x cp:*wa, v), v=vt,, p = p, = niT(p;’ 

Hence, the transforms of the displacement auk, v;z(Q and pzk(<) have been obtained and are 
defined by formulae (7.16) (7.19) and (6.12) and (5.7). From inversion formulae (7.20), (4.6) and (3.2) 
(3.4) we obtain their originals, and using formulae (2.1) (6.12) and (7.1) the displacements themselves, 
and we thereby obtain the exact solution of the problem for the case when the conditions of sliding 
clamping (1.2) are specified on the faces r = a,, cp = Cpi (i = 0, 1). 

If in conditions (1.1) ‘p. = -z and cpl = n and there are no faces cp = cp; (i = 0, l), we must apply 
integral transformation (7.8) to Eqs (7.2) instead of integral transformations (7.12) and17.13). As a 
result they reduce to Eqs (7.14) and (7.15) in which we must take un = -in while z, and Zt are taken 
from formula (3.7). We apply integral transformations (7.6) and (7.17) to Eqs (7.14) and (7.15), modified 
in this way, where we must also take u, = n and also v = vi, which are the roots of the first equations 
of (4.5) and v = v:, which are the roots of Eq. (7.18). We must take u = n in the latter equation. As 
a resulr we obtain the transforms aj$(<) and V$(<), and, as in the previous case, we obtain the 
displacements, thereby completing the construction of the exact solution of the problem, 

For the proposed method it is essential that the faces r = ai, cp = cpi (i = 0,l) should either be rigidly 
clamped, or the conditions of sliding clamping should be satisfied on them, where, when describing the 
method, we assumed, in order to reduce the amount of calculation, that boundary conditions of the 
same type are satisfied on all the faces. The proposed constructions can easily be extended to the case 
when the boundary conditions are not of the same type. It is merely important that each time the form 
of the boundary conditions on the faces should not go beyond the limit stipulated above. 
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